

Accueil du site > Ressources libres > Supports de cours

THERMIQUE ET CONSTRUCTION DURABLE

Daniel Fauré

Cours 10

THERMIQUE ET CONSTRUCTION DURABLE

ENSA Montpellier – Semestre 2

10 mai 2007

Cours 10: Energie - Favoriser les énergies propres et renouvelables

Daniel FAURE

Les cours précédents... et les suivants

- introduction
- théorie
- visite
- urbanisme durable : le contexte
- conception bioclimatique : bien dehors ?
- les matériaux : la peau
- JEUDI dernier : énergie/eau : limiter les besoins
- AUJOURD'HUI : choisir une énergie renouvelable
- et pour terminer un mini projet avant l'examen

Les cours précédents

- introduction
- théorie
- visite
- urbanisme durable : le contexte
- conception bioclimatique : bien dehors ?
- les matériaux : la peau
- JEUDI dernier : énergie/eau : limiter les besoins
- AUJOURD'HUI : choisir une énergie renouvelable
- et pour terminer un mini projet avant l'examen

Au préalable un rappel de thermique

Energie et puissance : saisir la différence !

L'énergie = stockable (exemples: l'eau d'un barrage, 1 m3 de bois, un camion de fioul)

Energie et puissance : saisir la différence !

La puissance = flux

(le flux suppose un débit c'est-à-dire un stock qui s'écoule sur un certain temps)

Stock d'eau et débit d'eau !

Exemple : je dispose de 20 m3 d'eau

Si mes 20 m3 d'eau s'évacuent en 100 h, il me suffit d'un tuyau de diamètre 16 mm)

Stock d'eau et débit d'eau!

Exemple : je dispose de 20 m3 d'eau

Si mes 20 m3 d'eau s'évacuent en 1 seconde, il s'agit d'un torrent de 5 m de large et 1m de haut qui roule à 14,4 km/h)

Retour à énergie et puissance!

Exemple : je dispose de 20 m3 de fioul

Si mes 20 m3 de fioul s'évacuent en 100 h, il me suffit d'un tuyau de diamètre 16 mm)

Retour à énergie et puissance!

Exemple : je dispose de 20 m3 de fioul

(Si mes 20 m3 de fioul s'évacuent en 1 seconde, il s'agit d'un torrent de 5 m de large et 1m de haut qui roule à 14,4 km/h)

Energie et puissance : 2 notions à distinguer

- 1 I de fioul = 10 kWh, Calculez:
- L'énergie contenue dans les 20 m3 de fioul
- □ La puissance de mes 20 m3 de fioul qui s'évacuent en 100 h
- □ La puissance de mes 20 m3 de fioul qui s'évacuent en 1 seconde

Energie et puissance : 2 notions à distinguer

- L'énergie contenue dans les 20 m3 de fioul
- 20 000 *10 kWh = 200 000 kWh
- □ La puissance de mes 20 m3 de fioul qui s'évacuent en 100 h
- 200 000/100 = 2 000 kW = Le chauffage d'un vieil immeuble de 300 logements!
- La puissance de mes 20 m3 de fioul qui s'évacuent en 1 seconde
- 200 000* 3600 = 720 000 000 kW = 720 gW = une centrale nucléaire!

Energie et puissance : saisir la différence !

La même énergie qui s'écoule en un temps long ou un temps court peut conduire à du confort ou à un désastre

AUTREMENT DIT

Ou encore

Revenons au soleil!

La seule énergie durable (donc renouvelable) vient du soleil, énergie de flux :

- le pétrole vient de la fermentation des plantes (d'où le nom d'énergie fossile : énergie de stock)
- le gaz et le charbon aussi

Revenons au soleil!

Seules:

- la géothermie profonde
- la radioactivité

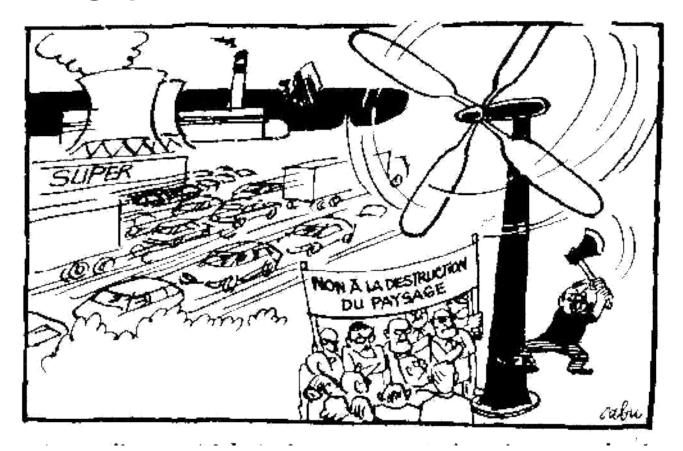
Proviennent du big bang!

Revenons au soleil!

Quand dans 20 à 40 ans il n'y aura plus de gaz, de fioul et de charbon :

les énergies renouvelables seront la principale source d'énergie

 la radioactivité et la géothermie faisant l'appoint


Les énergies renouvelables

Nous avons comme énergies renouvelables issues du soleil :

- L'éolien
- L'énergie des marées
- L'hydraulique
- L'énergie de la biomasse : bois, etc...
- L'énergie solaire

Eolien et énergie des marées...

L'architecte intervient peu sur ce genre d'opération... dommage pour la société

L'hydraulique...

Ici aussi, il serait bon que l'architecte donne son avis!

Restent le solaire et le bois

Limiter les rejets

La règlementation thermique RT 2005 a fixé un coefficient multiplicateur, tenant compte des bilans et rejets, à appliquer aux énergies pour les bilans thermiques comme ceci :

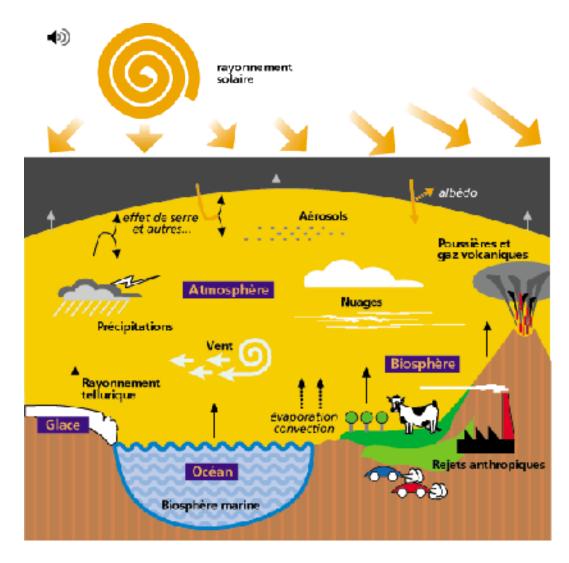
□Électricité: 2.58

□Gaz:1

□Bois : 0.6

□Soleil: 0

Ceci veut dire que les rejets du solaire sont nuls!


Les énergies solaires

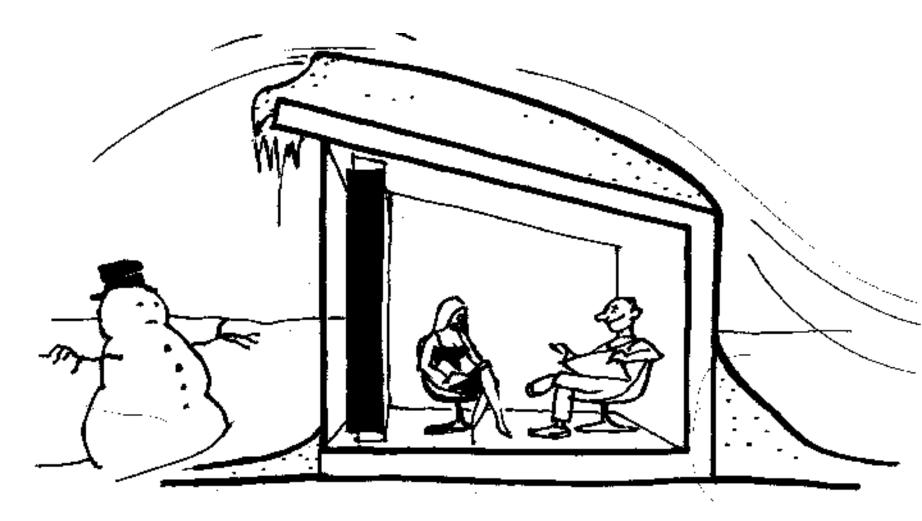
Nous n'étudierons aujourd'hui que l'énergie solaire car c'est l'énergie qui se prête le mieux à une cohérence architecturale :

- Le solaire passif ou bioclimatique (vu en partie)
- Le chauffage solaire
- L'eau chaude solaire
- L'électricité solaire

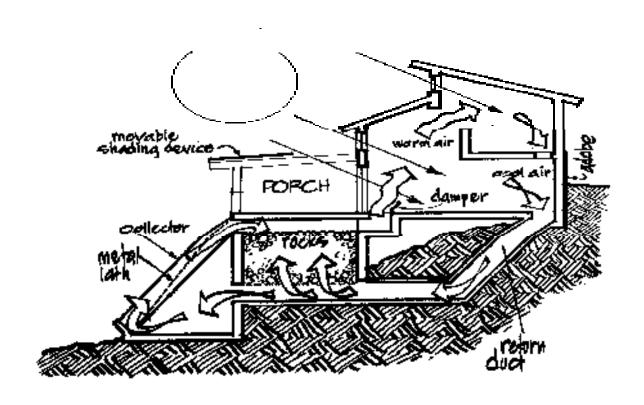
L'énergie solaire et effet de serre

Le schéma planétaire de l'apport solaire

Le solaire passif


Le solaire passif : qui capte le soleil dans l'architecture sans recourir à des systèmes techniques (capteurs, pompes, ballons d'eau)

NB: maison passive, habitant actif!


Maison passive risquée, en été!

Solaire passif basique : je capte, je stocke, j'isole....et en été, je me protège

Maison passive améliorée, construite à partir du capteur

Usine solaire passive et active

Les photopiles font brise-soleil

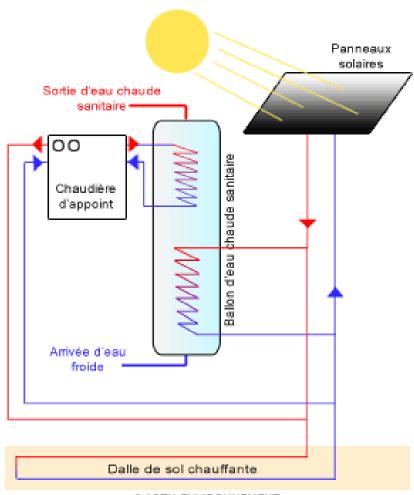
Solaire passif : beaucoup d'avantages et peu d'inconvénients



Solaire passif : ambiance

Un bibliothèque à Lausanne (arch Devantery-Lalumière)

Une architecture passive agréable été et hiver


Le chauffage solaire actif

Le chauffage solaire actif : qui capte le soleil en ayant recours à des systèmes techniques (capteurs, pompes, ballons d'eau)

Schéma de principe simplifié

Shéma: détails

@ ACTU-ENVIRONNEMENT

Chauffage solaire : dimensionnement

LIEU	Surface à chauffer	Surface de capteurs	économie
Marseille	110 m2	13 m2	50% 4600 kWh
Strasbourg	150 m2	13 m2	30% 6400 kWh

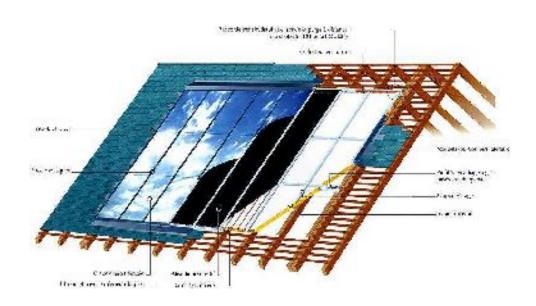
En résumé, en région méditerranéenne, prévoir en surface de capteurs 10 % de la surface chauffée pour 50 % d'économie

Chauffage solaire actif : avantage et inconvénients

Avantages:

- Gestion simple et automatique
- Confortable
- Econome
- Fiable
- La pompe permet de mettre le capteur où on veut, et dans ce sens, la technique sert l'architecture

Inconvénients


- Plus cher que le passif
- Nécessite entretien
- Reste cher malgré aide fiscale
- angle optimum : 60 à 90° Sud plus ou moins 20°

Et l'esthétique

On dit que le chauffage solaire c'est pas beau

Capteurs adaptés toiture de montagne (dessin Clipsol)

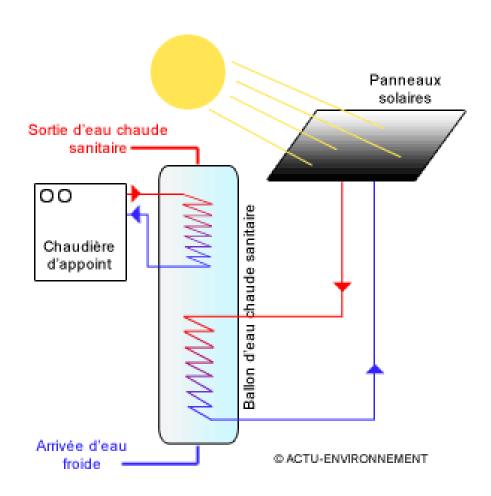
L'architecte peut trouver des solutions belles et efficaces

Logements
HLM
Bourgoin.
Architecte
Groupe 6
Ingénieur
Adret

Et aussi, regardons autour de nous (extrait du site maclimoche.com)

Il faut adresser la critique esthétique à tous les systèmes sans exception.

Nb: il faut un permis de construire pour un capteur, mais pour la clim, il y a beaucoup de tolérance!


Conclusion sur l'architecture passive ou active

Ce genre de projet, parce qu'il est plus technique, se fait, encore plus en équipe architectes/ingénieurs dans le respect des compétences et des sensibilités de chacun.

...sans oublier l'entreprise et l'utilisateur!

L'eau chaude solaire

Schéma

ECS solaire modes de calculs

Pour nos régions :

- 0,5 m2 de capteurs par personne en collectif
- 1 m2 en maison individuelle
- 75 I d'eau par m2 de capteur
- Pour un bilan de 60 à 70 % d'économie
- Angle optimum : 30 à 70 ° Sud plus ou moins 30°, donc beaucoup plus simple à placer que le chauffage solaire actif

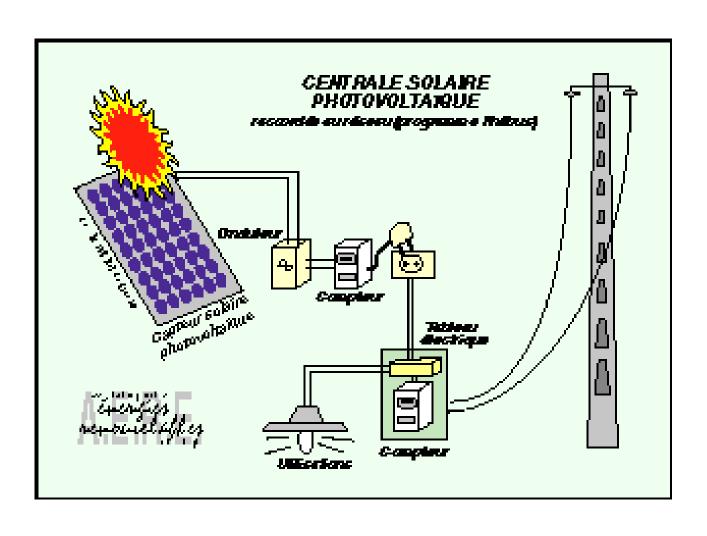
ECS solaire : avantage et inconvénients

Avantages:

- Autonome de mars à septembre
- Économie
- Fiabilité
- Aide fiscale

Inconvénients

- Nécessite entretien
- Les prix français restent élevés


L'électricité solaire

Electricité solaire

Principe:

- Les photons viennent frapper une surface à base de silicium (issu du sable), ce qui déclenche une réaction chimique provoquant du courant continu.
- Ce courant est utilisé tel quel (sites isolés) ou envoyé (cas le plus fréquent) au réseau où il est revendu
- La loi a prévu des tarifs de rachats par EDF de 0,4 euro/kWh (4 fois plus que le prix) et 0,55 si un effort architectural est fait
- Temps de retour 10 ans et après ça rapporte!
- On dit aussi bien photopiles ou centrale photo-voltaïque

Centrale solaire (doc Hespul)

Eglise à Ales (architecte Y Jautard)

Lycée Pic Saint Loup Architecte Pierre Tourre BET Betso


Toiture photopiles

Etanchéité photopiles

Tuiles solaires (doc Ymeris)

Centrale photovoltaïque

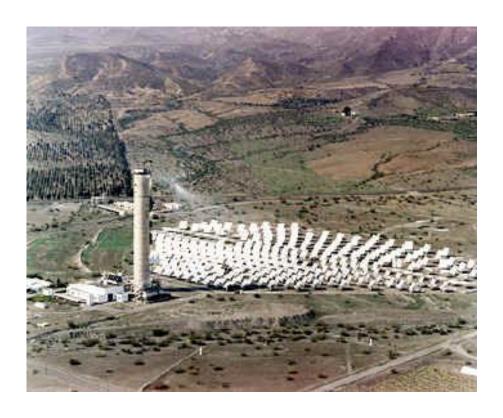
Electricité solaire : quelques chiffres

Un m2 de photopiles :

- Permet d'arriver à une puissance maximum(on dit puissance crète) de 100 W
- II produit 125 kWh/m2.an ici à Montpellier
- Angle optimum : compris entre 0 et 40°, Sud plus ou moins 30°

Si un logement économe a des besoins d'électricité de 2500 kWh/an, il suffira d'installer 20 m2 pour couvrir les besoins, même si le réseau EDF se charge de régulariser l'offre et la demande

Les autres usages solaires


La concentration solaire : pour la cuisine ...ou la recherche (Odeillo)

Concentration parapolique : pour la production d'électricité

Comme ici à Almeria en Espagne

Le véhicule solaire

Le scooter solaire

L'avion solar impulse de Betrand Picard

Solar impulse devrait décoller en 2008

En attendant vos vacances en « yacht solaire »

Jeudi 24 mai, on fait une revue de tout ce qu'on a vu pour être « tip top pour l'exam »

Bateau Aquabus - 15m2 de photopiles -

www.outilssolaires.com